Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification conditions did not affect survival, body size, or developmental speed of a copepod species during any of its life stages. Egg production and hatching rates also did not change among generations of females exposed to ocean acidification conditions. Thus, this copepod appears more tolerant to ocean acidification than ...

Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Reproduction and larval development of two copepod species were sensitive to extreme ocean acidification conditions. The hatching rate tended to decrease, and mortality rate of young copepods tended to increase. (Laboratory study)

Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Under extreme ocean acidification conditions (pH 6.8), the egg production rates of copepods decreased significantly. For two species of sea urchins, fertilization rate of eggs decreased with increasing ocean acidification conditions. Furthermore, the size of urchin larvae decreased and deformities increased. These effects on marine life could lead to changes ...

Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Some copepods (Calanus species) in the Arctic routinely encounter a range of seawater pH levels each day as they migrate vertically in the ocean; they were not severely affected when exposed to ocean acidification conditions in the laboratory. In contrast, a copepod species (Oithona similis) that does not vertically migrate, ...

Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

A species of copepod (Tisbe battagliai) had decreased reproduction and growth when exposed to ocean acidification conditions. Over time, these changes could result in smaller brood sizes, smaller females, and perhaps later maturing females, which could destabilize the food web. (Laboratory study)

Ocean Acidification-Induced Food Quality Deterioration Constrains Trophic Transfer

  • Posted on: Wed, 03/30/2016 - 13:37
  • By: petert

Our present understanding of ocean acidification (OA) impacts on marine organisms caused by rapidly rising atmospheric carbon dioxide (CO2) concentration is almost entirely limited to single species responses. OA consequences for food web interactions are, however, still unknown. Indirect OA effects can be expected for consumers by changing the nutritional ...

Effects of Elevated Carbon Dioxide (CO2) Concentrations on Early Developmental Stages of the Marine Copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae)

  • Posted on: Wed, 03/30/2016 - 13:11
  • By: petert

Ocean acidification poses an ongoing threat to marine organisms, and early life stages are believed to be particularly sensitive. The boreal calanoid copepod Calanus finmarchicus seasonally dominates the standing stock of zooplankton in the northern North Sea and North Atlantic, and due to its size and abundance is considered an ecological key ...

Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater: effects on survival and development

  • Posted on: Wed, 03/30/2016 - 13:07
  • By: petert

The impact of medium-term exposure to CO2-acidified seawater on survival, growth and development was investigated in the North Atlantic copepod Calanus finmarchicus. Using a custom developed experimental system, fertilized eggs and subsequent development stages were exposed to normal seawater (390 ppm CO2) or one of three different levels of CO2-induced acidification ...

Have we been underestimating the effects of ocean acidification in zooplankton?

  • Posted on: Tue, 03/29/2016 - 14:42
  • By: petert

Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2) concentrations has supported the view that copepods ...

Pages