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ABSTRACT. New  England coastal and adjacent Nova  Scotia shelf 
waters have a reduced buffering capacity because of significant freshwater 
input, making the region’s waters potentially more vulnerable to coastal 
acidification. Nutrient loading and heavy precipitation events further 
acidify the region’s poorly buffered coastal waters. Despite the apparent 
vulnerability of these waters, and fisheries’ and mariculture’s significant 
dependence on calcifying species, the community lacks the ability to 
confidently predict how the region’s ecosystems will respond to continued 
ocean and coastal acidification. Here, we discuss ocean and coastal 
acidification processes specific to New England coastal and Nova Scotia 
shelf waters and review current understanding of the biological 
consequences most relevant to the region. We also identify 
key research and monitoring needs to be addressed 
and highlight existing capacities that should 
be leveraged to advance a regional 
understanding of ocean and 
coastal acidification. 

Ocean and Coastal Acidification
off New England and Nova Scotia

EMERGING THEMES IN OCEAN ACIDIFICATION SCIENCE

This true-color image of the Northeast 
United States and Canada was cap-

tured by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on August 11, 

2002. Credit: Jacques Descloitres, MODIS 
Rapid Response Team, NASA/GSFC
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Gulf of Maine (GOM), central GOM, 
Georges Bank and Nantucket Shoals, 
and the northern Middle Atlantic Bight 
(MAB) likely represent systems within 
the Northeast Coastal Acidification 
Network (NECAN) study area where 
ocean acidification will be more readily 
discernible than could be the case for the 
complex nearshore environments. The 
rate of ocean acidification of these waters 
is similar to the rate of atmospheric CO2 

increase further modified by the effects of 
multidecadal oscillation (e.g., the Atlantic 
multidecadal oscillation) processes.

Coastal Acidification. The supply of 
varying amounts of DIC, dissolved and 
particulate organic carbon, and nutri
ents from riverine and estuarine sources, 
as well as total alkalinity (TA), can all 
significantly affect the local carbonate 
chemistry of the receiving water mass. 
Some coastal waters in the New England/
Nova  Scotia region are influenced by 
nutrient loading and significant fresh
water inputs that can episodically yield 
riverine plumes corrosive to calcium car
bonate (i.e., conditions where dissolution 
is favored). Nutrient loading promotes 
organic matter production by autotrophy, 
which can later result in intense respira
tion by heterotrophs that drives up local 
CO2 concentrations. Coastal acidifica
tion generally exhibits higher frequency 
variability relative to ocean acidification 
(except in cases of episodic upwelling), 
resulting in shortterm episodic events.

From an organism’s perspective, there is 
little distinction in the resulting chem
istry between the two forms of acid
ification (Waldbusser and Salisbury, 
2014). However, the frequency dynam
ics of the two processes are very dif
ferent and will be described further in 
the following sections.

OCA effects are evident along all 
coastal margins (see McLaughlin et  al., 
2015, in this issue), including the US West 
Coast where upwelling episodically sup
plies waters corrosive to oyster larvae (see 

Barton et  al., 2015, in this issue). High 
levels of larval mortalities were attributed 
to such events beginning in 2007 at two 
key Pacific Northwest shellfish hatcheries. 
This event garnered considerable atten
tion worldwide from coastal communi
ties concerned that this situation may be 
a harbinger of things to come elsewhere. 
New  England and Scotian Shelf waters 
may be at elevated risk for OCA due to 
the reduced buffering capacity of these 
coastal waters relative to more southern 
US coastal waters (Wang et al., 2013). A 
wellbuffered solution’s pH changes very 
little when an acid is added. In the case 
of OCA, carbonic acid is generated when 
CO2 is added to the water (either from the 
atmosphere or due to respiration). The 
capacity of seawater to resist the addition 
of this acid is termed “buffering capacity.” 
Hence, seawater with reduced buffering 
capacity exhibits a more pronounced pH 
change for a given input of CO2, mak
ing episodic excursions to corrosive con
ditions more likely. Buffering capacity 
is lowered in the Northeast waters pri
marily as a result of (1) the effect lower 
temperatures have on the carbonic acid 
system and (2) changes in the concen
tration of TA and DIC or their ratios by 
dilution with freshwater or the addition/
consumption of DIC by biology. 

Because many communities in this 
region are socioeconomically and cultur
ally dependent on commercial and rec
reational fishing, it is important to care
fully investigate the implications of OCA. 
This paper reviews the science specific to 
acidification of coastal waters (nearshore 
out to the shelf break) extending from 
Long Island Sound (LIS) to the Canadian 
Scotian Shelf. NECAN facilitated the 
review, which includes input from dozens 
of scientists and stakeholders engaged in 
advancing our understanding of OCA 
within the New  England/Nova  Scotia 
region. The content was derived largely 
from a subject matter expert webinar 
series (http://www.neracoos.org/necan) 
followed by a twoday workshop held in 
New Hampshire in April 2014.

INTRODUCTION 
Longterm, sustained timeseries sta
tions and repeated geochemical sur
veys both show that the global ocean is 
acidifying concurrent with rising atmo
spheric CO2 (Takahashi et  al., 2014) at 
rates likely unprecedented in Earth his
tory (Zeebe, 2012). Chemical changes in 
seawater as a result of the uptake of CO2 
include increasing concentrations of dis
solved inorganic carbon (DIC), the pro
duction of carbonic acid (lowering of 
pH), an increase in the partial pres
sure of seawater CO 2,sw  (pCO2,sw), and a 
decrease in the availability of carbonate 
ion. How these changes will affect marine 
life is a prominent issue for contemporary 
oceanography. Early studies explored the 
effects on marine calcifiers and generally 
demonstrated negative impacts to bio
calcification. These findings raised con
cerns about living marine resources and 
their dependent human communities. In 
subsequent years, species response stud
ies have explored an everincreasing array 
of marine taxa from phytoplankton to 
fish, revealing a diverse spectrum of taxa 
specific responses beyond biocalcifica
tion (Orr et al., 2005; Doney et al., 2009). 
Still, much uncertainty remains regard
ing the biological effects of ocean acidifi
cation (OA) and how it will interact with 
other global aspects of a changing ocean. 
Many species and life stages most sensi
tive to OA (e.g.,  shellfish larvae) reside 
within biogeochemically complex coastal 
waters that can exhibit enhanced “coastal 
acidification” (Strong et al., 2014; Wallace 
et al., 2014). These two forms of acidifi
cation, ocean and coastal acidification 
(OCA), can be roughly described and 
compared as follows.

Ocean Acidification. Ocean acidifica
tion changes the carbonate chemistry of 
seawater in response to largescale phys
ical oceanic processes that include the 
global uptake of atmospheric CO2 as well 
as the entrainment of acidified subsurface 
waters due to vertical mixing and upwell
ing. Waters of the Scotian Shelf, western 

http://www.neracoos.org/necan
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THE NORTHEAST COASTAL 
ACIDIFICATION NETWORK 
NECAN’s geographic focus encompasses 
the waters from LIS, Georges Bank, 
the GOM and Browns Bank, and Sable 
Island Bank out to the shelf break. This 
New  England/Nova  Scotia region rep
resents some of the most valuable marine 
resource real estate in the world, provid
ing direct economic benefit to at least 
six US states (New  York, Connecticut, 
Rhode Island, Massachusetts, 
New  Hampshire, and Maine) and two 
Canadian provinces (Nova  Scotia and 
New Brunswick). The New England fish
ing industry is deeply rooted in the region’s 
culture, having been established as the 
first colonial industry in America over 
400 years ago. Fishery impacts to coastal 
ecosystems have escalated over time, and 
with the depletion of large predatory 
groundfish in the 1950s (Bourque et  al., 
2007), catch has increasingly transitioned 
to prey species, such as lobster (Steneck 
et al., 2011). In 2012, New England landed 
301,185 metric tons of finfish and shell
fish, earning $1.2 billion in landings rev
enue (NMFS, 2014). Twothirds of these 
landings can be attributed to American 

lobster and sea scallop (Figure  1), two 
species that are heavily dependent upon 
biocalcification processes. In 2013, mol
lusks represented 41.5% of fisheries land
ings values in New England, with a total 
value greater than $482 million (NMFS, 
2014) and ecosystem services far exceed
ing that value (Costanza et  al., 1997). 
The MAB shelf break is also a high 
production area and an important com
mercial fishing ground, including 
intensive lobster fishing activities. 
The dependence of commercial fish
eries on calcifying species sets the 
New  England/Nova  Scotia region apart 
from other coastal regions of the United 
States. Of the key species harvested in 
the New  England/Nova  Scotia region 
(Figure 1), few have been investigated in 
terms of their sensitivity to changes in 
carbonate chemistry, and of those that 
have, limited life stages have been tested 
(see later discussion).

NECAN aims to foster regional 
engagement on OCA, improve under
standing of what OCA means to regional 
stakeholders, and connect a broad range 
of interest groups. Industries and business 
groups that could potentially be impacted 

by ocean (longterm) and coastal (near
term) acidification include aquaculture, 
wild harvesters of both fish and shellfish, 
wholesalers, seafood distributors, restau
rants, and markets. These groups need 
objective information on OCA, and the 
scientific community needs their input to 
design effective monitoring and research 
strategies for the region. In April 2014, 
Maine established the Commission 
to Study the Effects of Coastal and 
Ocean Acidification and its Existing 
and Potential Effects on Species that are 
Commercially Harvested and Grown 
Along the Maine Coast. Comprised of 
two subcommittees, one that reviewed 
Washington State’s OA Commission 
Report and another that reviewed the 
state of the science (partly informed 
through NECAN), the commission 
issued a report in December 2014 to the 
Maine legislature that provided recom
mendations for monitoring and research 
relevant to Maine. The Commission’s 
makeup included: two members of the 
Maine Senate, three members of the 
Maine House of Representatives, eight 
members appointed by the Commissioner 
of Marine Resources (including a rep
resentative of an environmental/ 
community group, several persons who 
fish commercially, and ocean acidifi
cation scientists), and designees of the 
Commissioner of Marine Resources, 
Commissioner of Environmental 
Protection, and the Commissioner of 
Agriculture, Conservation, and Forestry. 
Recommendations included establish
ing a Maine OA Commission to offer 
continued policy recommendations 
to the state legislature. 

OCEAN AND COASTAL 
ACIDIFICATION OF 
THE NEW ENGLAND/
NOVA SCOTIA REGION
A range of marine organisms that 
includes shellfish, corals, and pteropods 
is generally thought to be sensitive to 
changes in the degree to which waters 
are supersaturated with respect to cal
cium carbonate, the building block for 

FIGURE  1. New  England fisheries species decadal commercial landing statistics as reported 
from the National Oceanic Atmospheric Administration National Marine Fisheries Service (2014; 
http://www.st.nmfs.noaa.gov) and inflation corrected to 2008 (http://www.bls.gov). Note the grow-
ing importance of American lobster and sea scallop in terms of total landed value 
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their shells and skeletons (Doney et  al. 
2009). This degree of saturation is com
monly expressed relative to the mineral 
aragonite (or calcite), the most common 
marine form of calcium carbonate, and is 
denoted as Ωarag (or Ωcal). An Ωarag value 
>1.0 indicates supersaturation, while 
values <1.0 indicate undersaturation— 
conditions corrosive to aragonite. 
Generally, the more seawater is saturated 
with calcium carbonate, the faster the rate 
of mineral precipitation (Morse et  al., 
2007) and the less energy it takes to pro
duce a shell (e.g., Waldbusser et al., 2015). 
Most marine calcifiers require Ωarag well 
in excess of 1.0 to optimally produce skel
etons (see later discussion). As a result of 
OCA, seawater becomes less saturated 
(Ωarag decreases) with increasing pCO2, 
thereby requiring organisms to expend 
additional energy for shell production. 
Furthermore, Ωarag values can also be 
depressed (even to corrosive levels) at 
colder temperatures or by dilution with 
freshwater. Debate continues within the 
scientific community with respect to des
ignating critical “thresholds” of Ωarag for 
different species. Is it a thermodynamic 
or kinetic threshold for mineral precip
itation? Or, is it the point at which the 
rate of chemical change exceeds a species’ 
adaptive capacity (Friedrich et al., 2012)? 
Alternatively, thresholds could be defined 
as the point at which ambient chemis
try conditions permanently exceed the 
preindustrial range of natural variabil
ity (e.g.,  Ekstrom et  al., 2015). Indeed, 
careful consideration needs to be given to 
how we define acidification thresholds for 
the question at hand. 

In an effort to map potentially vul
nerable zones within the New  England/
Nova  Scotia region, we use a gridded 
data product (see online Supplemental 
Methods) to estimate Ωarag through the 
coupling of surface CO2 partial pres
sure (pCO2,sw), according to Signorini 
et  al. (2013), to total alkalinity derived 
from TAsalinity relationships obtained 
from historical ship surveys in a simi
lar manner adopted previously to map 
OA dynamics (e.g., Gledhill et  al., 2008, 

2009). This approach could not be applied 
to LIS primarily because of satellite land 
masking, but it does capture the seasonal 
dynamics across much of the remain
ing region. Provided the thermodynamic 
threshold (Ωarag = 1) represents perhaps a 
more conservative benchmark of concern 
for marine life, we have elected to map 
minimum monthly mean Ωarag values 
across the region (Figure  2). Regionally, 
the lowest values tend to occur in early 
spring, particularly along the Scotian 
Shelf. During this period, monthly mean 
Ωarag values north of Cape Cod are gener
ally between ~1.2 and 1.5 (or frequently 
lower), levels where acute responses 
of bivalve larvae have been observed 
(Waldbusser et al., 2015). 

An important factor contributing to 
the regionally depressed Ωarag values in 
the New  England/Nova  Scotia region is 
freshwater input (rivers, snow melt, ice 
melt). The entire region exhibits much 
lower surface salinities relative to typical 
North Atlantic oceanic waters due in large 
part to the Labrador Current (Figure 3). 
The Labrador Current is heavily influ
enced by Arctic water outflow and the 
St. Lawrence River, which as the outflow 
of the Great Lakes, is one of the largest in 
North America. The current flows along 
the Scotian Shelf into the GOM, supply
ing poorly buffered waters to the Bay of 
Fundy and the Maine Coastal Current. 
This lowsalinity water exhibits reduced 
concentrations of both carbonate and 

the calcium ions, which directly deter
mine Ωarag. In addition, Figure 2 reveals 
several locations within the region that 
are actually corrosive (Ωarag<1). These 
areas generally occur where coastal acid
ification processes dominate, such as the 
Penobscot and Kennebec River mouths, 
and within bays such as Boston Harbor 
or Cape Cod Bay.

Using this model, we also explored the 
primary controls on the seasonal dynam
ics from selected locations throughout 
the region, except for the LIS, where we 
instead estimate seasonal dynamics from 
monthly composited US Environmental 
Protection Agency pH data collected 
there from 2010 through 2013 (see online 
Supplemental Methods). Figure  4 illus
trates the resulting Ωarag dynamics from 
the combined effects of cool temperature, 
freshwater (Salisbury et  al., 2008, 2009), 
and biological productivity/ respiration at 
each of the selected locations. Locations 
denoted in Figure  4 as “OA” are where 
atmospheric uptake of CO2 and large
scale oceanic processes are important 
drivers of longterm changes in Ωarag, 
while those labeled “CA” are locations 
where coastal acidification processes are 
important and can result in episodic cor
rosive conditions as described previously.

In all cases, the timeseries plots in 
Figure  4 show that the dynamic range 
in Ωarag at seasonal (or episodic) time 
scales can exceed a full unit, consider
ably greater than the anticipated annual 
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mean trends due to ocean acidifica
tion (~0.012 ± 0.001 Ωarag yr–1; Gledhill 
et al., 2008). Each year, Ωarag is enhanced 
during the spring/summer primarily due 
to the effects of net community produc
tion (net autotrophic) and then is offset in 
the fall/winter (net heterotrophic), yield
ing no approximate net change in Ωarag 
across a full annual cycle. Although tem
perature and salinity exert major controls 
on Ωarag independently, their combined 
effects (Figure 4) are only minor factors 
at seasonal or subseasonal time scales rel
ative to the effects of biology. Still, as dis
cussed below, within nearshore/estuarine 
systems, seasonal (and interannual) 
changes in freshwater budgets can impart 
a firstorder effect on Ωarag that results in 
episodic corrosive events within estuaries 
and river plumes (Figure 2). In nearshore/
estuarine systems, carbonate chemistry is 
more acutely affected at subseasonal time 
scales relative to offshore waters by net 
community processes (e.g.,  Craig et  al., 
in press) and airsea exchange. Within 
the shallow mixed layers of the near
shore environments, landsourced nutri
ent inputs can drive intense productivity 
and respiration (Figure  4). This inten
sified biogeochemistry yields consider
able highfrequency variability and large 
amplitude swings in Ωarag relative to Gulf/
Shelf waters. Furthermore, gas exchange 
plays a much more important role within 
nearshore environments due to the 
extreme differences between the sea and 
air pCO2 that result from these processes. 
The larger pCO2 differential between air 

and sea, coupled with a shallow mixed 
layer depth, can result in a significant CO2 
flux. In the case of LIS, this is manifested 
as CO2 off gassing to the atmosphere in 
the fall during periods of intense respi
ration (eutrophication). Conversely, in 
the western GOM, productivity draws 
pCO2,sw to levels where an influx of atmo
spheric CO2 is facilitated throughout part 
of the year, similar to conditions in the 
Baltic Sea (Thomas and Schneider, 1999). 

Thus, while biological productivity/
respiration and seasonality of the hydro
logic cycle generally govern shortterm 
variability of the system (subannual), 
longterm secular changes (e.g.,  decadal 
time scales) tend to reflect the influences 
of largescale changes in salinity, tem
perature, and the continued rise in atmo
spheric CO2 that is either absorbed by the 
surface waters (i.e., ocean acidification) or, 
in the case of LIS, retards the off gassing 
of CO2. Additionally, decadal trends 
in nutrient availability, either through 
changes in the anthropogenic supply or by 
changes in vertical mixing rates, can also 
alter the annual mean state of the carbon
ate system (coastal acidification).

An important area of research is 
striving to understand how organisms 
respond to shortterm low Ωarag events 
versus longterm changes in Ωarag. Some 
marine organisms naturally exposed to 
low Ωarag or highly variable Ωarag may 
be better adapted or acclimated to such 
conditions. However, we can expect that 
excursions past critical thresholds caused 
by shortterm carbonate dynamics will 

become more frequent and persist for 
longer periods in response to ocean 
acidification, assuming no change in 
coastal acidification processes. This latter 
assumption is likely false and, along with 
our limited understanding of biologi
cal response, contributes to considerable 
uncertainty in forecasting the longterm 
impacts of OCA. Coastal processes may 
also offer an opportunity for local mitiga
tion actions because while only changes 
in global carbon policies can avert ocean 
acidification, regional and state policies 
influence many coastal acidification pro
cesses (e.g.,  nutrient loading, river dis
charge management).

A BRIEF GEOCHEMICAL TOUR 
OF THE REGION
Scotian Shelf Waters 
Understanding the biogeochemis
try of the Scotian Shelf waters is criti
cal to improving our understanding of 
the longterm trends and primary con
trols of the carbonate chemistry of the 
GOM. Scotian Shelf waters constitute 
the northern oceanic boundary of the 
New  England/Nova  Scotia region and 
have been freshening in response to 
increasing Arctic water outflow since 
the mid1960s (Dickson et  al., 2003). 
Outflows from the Gulf of St. Lawrence 
and the Labrador Shelf Current bring 
fresher and cooler water onto the Scotian 
Shelf, which exhibits one of the larg
est seasonal temperature fluctuations 
of the world ocean, ranging from sub
zero temperatures to 20°C. In winter, 

due to very cold tem
peratures, Scotian Shelf 
waters likely have the 
lowest carbonate min
eral saturation states of 
the entire New  England/
Nova Scotia domain out
side of episodic nearshore 
conditions (Figure  2, 
Station OA1). After col
lapse of the spring bloom, 
seasonal warming and 
shifts in phytoplankton 
community composition 

FIGURE  3. Mean spring sur-
face salinity field off the 
coasts of New  England and 
Nova Scotia derived from the 
Northeast Fisheries Science 
Center Oceanography Database 
(Fratantoni et  al., 2013). The black 
dashed line denotes the NECAN 
study area. Low-salinity waters are 
supplied from the Scotian Shelf into 
the Gulf of Maine where they are 
further freshened along the Maine 
Coastal Current by numerous river 
and estuary inputs (black arrows).
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from large diatoms to smaller phyto
plankton taxa are the primary controls 
on the surface CO2 system of Scotian 
Shelf waters. These smaller taxa facil
itate net CO2 uptake in the late spring 
and summer (Craig et al., in press), fur
ther increasing summertime Ωarag values 
relative to what would be anticipated by 
purely temperature and salinity effects 
(Figure  4, OA sites). During autumn/
winter, cooling of shelf waters results in 
water column destratification that can 
permit corrosive subsurface waters to 
exchange with the surface (Shadwick 
et al., 2011; Burt et al., 2013).

Gulf of Maine 
The GOM is a continental shelf sea 
bounded by Cape Cod and Nova  Scotia 
and separated from the open Atlantic 
by Georges and Browns Banks. 
Considerable control of seasonal to inter
annual circulation patterns is exerted 
via shelf‐sea exchange through the nar
row Northeast Channel, which separates 
Georges and Browns Banks, and from 
the fresher coastal source waters from 
along the Scotian Shelf (e.g.,  Townsend, 
1991; Pringle, 2006). Short, but accentu
ated, spring blooms that occur from late 
March to early April control the carbon
ate system of the Gulf/Shelf waters. The 
supply of freshwater from the Scotian 
Shelf strongly affects the precise timing 
and magnitude of these GOM blooms 
(Head and Sameoto, 2007). The blooms 
export labile organic carbon into sub
surface waters where it is remineralized 
within the Wilkinson and Jordan Basins 
over extended residence times (Hopkins 
and Garfield, 1979), allowing accumu
lation of DICenriched, acidified sub
surface waters. Similar to the Scotian 
Shelf, during autumn/winter, GOM sur
face waters can exchange with corro
sive subsurface waters (Salisbury et  al., 
2009), resulting in episodic acidification 
events similar to those reported along the 
US West Coast during upwelling events. 
It is not yet known what effect these 
acidified events may have on marine 
life in the GOM.

Nearshore Waters of the 
New England/Nova Scotia Region 
The relative vulnerability of a near
shore environment to coastal acidifica
tion can vary across the region in part 
due to the prevailing circulation of a 
given system. In cases where freshwater 
is advected laterally along the surface 
out to sea (e.g.,  estuarine type circula
tion), acidified subsurface waters can be 
imported from below and affect the sur
face layer (e.g., Burt et al., 2013). In con
trast, other systems (antiestuarine cir
culation) accommodate inflows from 
both offshore surface waters and riv
ers with outflow occurring in the sub
surface through downwelling. Thus, 
subsurface water characteristics approxi
mate those of surface waters, potentially 
making them less corrosive relative to 
estuarinetype systems.

Several moderately sized rivers in the 
northeast portion of the region, includ
ing St. John’s, Penobscot, Kennebec
Androscoggin, and Merrimack, discharge 
directly into the counterclockwise 
flowing Western Maine Coastal Current, 

which delivers the freshwater to coastal 
Maine (Pettigrew et  al., 2005; Salisbury 
et al., 2009). River runoff is greatest from 
April to July, resulting in extensive river 
plumes (Geyer et al., 2004) that can gen
erate local corrosive events (Salisbury 
et  al., 2009). Regional precipitation pat
terns strongly affect the magnitude of 
these events and are variable from year 
to year. For example, Figure 5 shows the 
difference in the distribution of Ωarag off 
Casco Bay, Maine, during June of a rel
atively dry year (2004) compared to a 
subsequent wet year (2005). The spatial 
extent and intensity of undersaturation 
(i.e.,  corrosive waters) in the Kennebec 
River plume is substantially greater 
during the wetter year. 

The significant difference in the cor
rosive nature of the plume during a 
wet period may foretell an import
ant concern for coming decades in the 
New  England/Nova  Scotia region. One 
of the most pronounced changes unfold
ing in the Northeast is in precipitation. 
Between 1958 and 2010, the amount of 
precipitation falling in very heavy events 

FIGURE 4. Estimates of the seasonal dynamic perturbation in Ωarag (blue) at each 
of the six subregions denoted in Figure 2. The selected locations are representa-
tive of the Scotian Shelf (OA1), Central Gulf of Maine (OA2), Georges Bank (OA3), 
New England Continental Shelf (OA4), Western Maine Coastal Current (CA1), and 
Long Island Sound (CA2). The relative forcing of lateral mixing (light blue), temperature and salin-
ity (red), air-sea flux (black), and biological productivity/respiration (green) are also shown. In most 
instances, estimates were derived by solving the carbonic acid system using Signorini et al. (2013) 
pCO2,sw fields paired with ship-based estimates of TA. Long Island Sound (LIS) was derived from 
monthly composited Environmental Protection Agency pH data obtained from the central LIS 
region from 2010 through 2013. The Western Maine Coastal Current station was derived using dis-
crete time series obtained at the Northeastern Regional Association of Coastal Ocean Observing 
Systems Ocean Acidification Time-series Station.
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(defined as the heaviest 1% of all daily 
events) increased more than 70% in the 
Northeast, a greater increase in extreme 
precipitation than any other region in 
the United States (Horton et al., 2014). In 
addition, the timing of the winter/spring 
peak flow dates has shifted a couple of 
weeks earlier, consistent with shifts in the 
snow/ice melt timings observed across 
the region (Hodgkins et  al., 2003). This 
earlier freshet may now cooccur with 
the period when Ωarag values are already 
near their annual minimum. Under an 
A2 emissions scenario (for details of the 
assumptions that go into this scenario, 
see http://www.ipcc.ch/ipccreports/sres/
emission/index.php?idp=98), a range 
of model projections averaged over the 
region suggests a 5% to 20% increase in 
winter precipitation, with the frequency 
of heavy downpours projected to increase 
over this century (Kunkel et  al., 2013). 
As a result, we anticipate that the inten
sity and extent of corrosive river plumes 
within the nearshore waters of this region 
will increase over the coming decades.

Urbanized Estuaries of the 
New England/Nova Scotia Region
The northeastern United States exhib
its some of the largest nutrient loading 
rates in the world (Anderson and Taylor, 
2001). Nitrogen inputs can include atmo
spheric deposition, livestock feed, biolog
ical nitrogen fixation, farm fertilizer, and 
human food. Within watersheds, nitro
gen is often filtered to some extent within 
wetlands and riparian habitats that atten
uate its delivery to coastal waters. What 
does get through, however, can pro
mote primary and secondary produc
tion and denitrification within estuaries 
and coastal water that can drive eutrophi
cation and coastal acidification. Portions 
of LIS have been observed to exhibit sea
sonally high pCO2 conditions in excess 
of 2,500 µatm (Wallace et  al., 2014), 
well above conditions in typical oceanic 
waters, which are commonly near that 
of the atmosphere (400  µatm). Within 
the Northeast, the import of nitrogen 
has gradually increased since the early 
1900s (Hale et  al., 2013), presumably 
increasing the export to coastal waters. 
Roman et  al. (2000) found that nitro
gen at eight estuaries in the Northeast 
increased by a factor of over three since 

1900, with northern estuaries, such as 
those in Maine, showing lower average 
annual concentrations than more south
ern systems, but continuing to increase 
due to population growth (Wilson and 
Fischetti, 2010). Nitrogen loading for 
Narragansett Bay may have increased by 
250% over the past 150 years due to the 
increase in the “sewered” human popula
tion and the use of agricultural fertilizer 
(Vadeboncoeur et al., 2010). 

There may be cause for optimism in 
the Northeast, however, given declines 
in nitrogen loadings due to reduc
tions in imports of livestock feed, and 
of significant recent decreases in atmo
spheric deposition (Hale et al., 2013). 
Improvements to wastewater treat
ment facilities have reduced loadings 
to Narragansett Bay by 50% in the last 
15 years by adding biological nutrient 
removal technology. Furthermore, nitro
gen loading to LIS has decreased from 
about 21 million kg yr–1 in 1974 to about 
14 million kg yr–1 in 2008. Some of the 
decline from 1994 to 2008 is related to 
reductions (40%) in nitrogen wet deposi
tion to the watershed. Nitrogen discharges 
from Connecticut and New  York waste 
water treatment facilities have also 
declined, from 85,000 to 61,000 kg day–1, 
or 31 million to 22.5 million kg yr–1 from 
1995 to 2010. The decline is due mostly 
to a nitrogen credit program under
taken as part of the Long Island Sound 
Study, in concert with improvements 
in secondary and tertiary treatment 
(Latimer et al., 2014). 

 
SUMMARY OF DIRECT 
BIOLOGICAL RESPONSE TO OCA 
WITHIN THE NEW ENGLAND/
NOVA SCOTIA REGION
Marine organisms respond to chang
ing ocean chemistry associated with 
OCA in a variety of ways. The major
ity of marine calcifying organisms stud
ied to date show decreased rates of cal
cification or even dissolution of shells 
(Fabry et al., 2008), which is understood 
to result from decreased Ωarag. However, 
the increase in CO2 or decrease in pH can 

FIGURE 5. Difference in Ωarag for a relatively dry year (2004) versus a wet year (2005). The spring- 
summer of 2005 was the wettest in the last two decades. The Ωarag was modeled as a function of 
temperature, salinity, and pCO2,sw from data obtained within a month of June 20. The image shows 
the effects of regional freshwater discharge, which is expected to increase in the coming decades.
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affect organisms’ acidbase regulation, 
metabolic rate, immune response, organ 
development, and olfactory discrimina
tion, among other things. An increase in 

pCO2 may release photosynthetic organ
isms from inorganic carbon limitation 
and actually increase their photosynthetic 
and growth rates (Koch et  al., 2013). 

Table  1 summarizes the variety of bio
logical responses that has been observed 
for various life stages of commercially 
important New  England/Nova  Scotia 

TABLE 1. Organismal responses of commercially important nearshore New England/Nova Scotia species to increased ocean and coastal acidification 
(OCA) conditions. Species are listed in order of commercial importance. This table represents a subset of all studies performed on populations origi-
nating from the New England/Nova Scotia region using only pCO2,sw as the manipulated variable. Responses are indicated in relation to the numbered 
treatments of each study. Subscripts are used to indicate at which treatment level a significant response was seen, compared to the lowest pCO2 
treatment condition, unless otherwise noted. Refer to online Supplemental Table S1 for a complete review of the biological response of New England/ 
Nova Scotia species or congeners (including noncommercially important species) to OCA, with and without covariables. 

Common 
Name

Scientific 
Name

Treatment levels Exposure 
Period

Life Stage Comments/ 
Reference

pCO2 
(ppm) pH ΩCalcite (Ωcal) or  

ΩAragonite (Ωarag) Larvae Juveniles Adults

American 
lobster

Homarus 
americanus

1: 400
2: 1,200 

1: 8.1
2: 7.7 NR 13 days Days to molt (↑);

Carapace length (↓)2
    Keppel et al., 2012

Soft shell 
clam

Mya 
arenaria

NR 1: 7.32
2: 7.04

1: Ωarag = 0.53
2: Ωarag = 0.25 18 days Recruitment (↓)2  

In situ manipulations of 
sediment Ωarag. pH data are 
those of the sediment.

Green et al., 2009

NR NR 1: Ωarag = 1.3
2: Ωarag = 0.7 35 days   Recruitment (↓)2  

In situ manipulations of 
sediment Ωarag. pH data are 
those of the sediment.

Green et al., 2013

NR 6.8–7.8 Ωarag = 0.21–1.87 2 hours   Burrowing (↓); 
Dispersal (↑)   Clements and Hunt, 2014

Hard clam

Mercenaria 
mercenaria

1: 390
2: 750
3: 1,500

1: 8.1
2: 7.8
3: 7.5

1: Ωarag = 2.37, Ωcal = 3.68
2: Ωarag = 1.92, Ωcal = 2.98
3: Ωarag = 0.85, Ωcal = 1.33

21 days
Survival (↓)2,3;
Metamorphosis (↓)2,3; 
Growth (↓)2,3

    Talmage and Gobler, 2009

1: 250
2: 390
3: 750
4: 1,500

1: 8.2
2: 8.1
3: 7.8
4: 7.5

1: Ωarag = 3.42, Ωcal = 5.31  
2: Ωarag = 2.92, Ωcal = 4.53  
3: Ωarag = 1.82, Ωcal = 2.82  
4: Ωarag = 1.08, Ωcal = 1.67

40 days

Survival (↓)3,4; 
Metamorphosis (↓)3,4; 
Growth (↓)3,4; 
Lipids (↓)3,4; 
Shell thickness (↓)3,4; 
Shell integrity (↓)3,4

    Talmage and Gobler, 2010

1: 248
2: 373
3: 782

1: 8.20
2: 8.08
3: 7.80

1: Ωarag = 1.98, Ωcal = 3.10  
2: Ωarag = 1.53, Ωcal = 2.59  
3: Ωarag = 0.99, Ωcal = 1.53

10-24 days

Calcium uptake (↓)2; 
RNA:DNA (↓)3; 
Growth (↓)3; 
Survival (↓)3

    Gobler and Talmage, 2013

NR 1: 7.8
2: 7.1

1: Ωarag = 1.5
2: Ωarag = 0.3 21 days Mortality (↑)2 Green et al., 2004

NR
1: 7.9
2: 7.3
3: 7.0

1: Ωarag = 1.6
2: Ωarag = 0.6
3: Ωarag = 0.4 

12–25 
days

Survival (↓)2,3; 
Shell dissolution (↑)2,3

 

pH data provided for 
sediment.

Green et al., 2009

NR NR Ωarag = 1.05–0.05 5 minutes   Settlement 
probability (↓)  

Laboratory experiment. 
Settlement probability 
decreased with 
decreasing sediment Ωarag, 
which correlates with 
increasing acidity.

Green et al., 2013

Eastern 
oyster

Crassostrea 
virginica

1: 390
2: 750
3: 1,500 

1: 8.1
2: 7.8
3: 7.5

1: Ωarag = 2.37, Ωcal = 3.68
2: Ωarag = 1.92, Ωcal = 2.98
3: Ωarag = 1.33, Ωcal = 0.85 

21 days
Survival (↓)3; 
Metamorphosis (↓)3; 
Growth (↓)3

    Talmage and Gobler, 2009

1: 394
2: 745
3: 1,430 

1: 8.1
2: 7.9
3: 7.7

1: Ωarag = 2.77, Ωcal = 4.27
2: Ωarag = 1.83, Ωcal = 2.83
3: Ωarag = 1.1, Ωcal = 1.69 

21 days

Survival ( ); 
Development (↓)2,3; 
Shell length (↓)2,3; 
Shell thickness (↓)2,3; 
Lipid content (↓)2,3; 
RNA:DNA (↓)2,3; 
Calcification (↓)2

    Gobler and Talmage, 2014

SYMBOL EXPLANATIONS: NR = Not reported; ↑ = Significant positive response to increased pCO2;  Table continued next page… 
↓ = Significant negative response to increased pCO2;  = No significant response to increased pCO2  
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species. Although generally the benthic 
living adults are harvested, typically only 
the planktonic early life stages of com
mercially important organisms have 
been studied with respect to OCA in this 
region. Online Supplemental Table  S1  
further summarizes observed responses 
for different life stages of all New England/
Nova  Scotia species and congeners that 
have been studied with respect to OCA. 
Organisms may respond to changes in 
any of the carbonate system parameters, 
including increased pCO2, decreased pH, 

or decreased Ωarag. Different organisms or 
even different biological responses of the 
same organism may be affected more by 
one parameter than by another. Therefore, 
in Tables 1 and S1, we report pCO2, pH, 
and Ωarag whenever possible, but through
out this discussion, we have used the car
bonate chemistry parameter that is, to 
our best understanding, most relevant 
to the organism or the process being 
discussed. However, even in instances 
where the biology is not directly respond
ing to Ωarag, we still urge the community 

of researchers considering biological 
responses to OCA to be mindful to report 
Ωarag because this will ensure that the car
bonate system is fully described as needed 
for comparative purposes.

Because organisms can adapt or accli
mate to OCA conditions, their responses 
to OCA may depend on the conditions, 
and on the variability of those conditions, 
that they currently encounter. Coastal 
carbonate chemistry can vary on hourly 
(tidal), daily (photosynthesis/respiration 
cycles), and seasonal (seasonal microbial 

TABLE 1. Continued…

Common 
Name

Scientific 
Name

Treatment levels Exposure 
Period

Life Stage Comments/ 
Reference

pCO2 
(ppm) pH ΩCalcite (Ωcal) or  

ΩAragonite (Ωarag) Larvae Juveniles Adults

Summer 
flounder 

Paralichthys 
dentatus

1: 775
2: 1,808
3 : 4,714 

1: 7.8
2: 7.5
3: 7.1

1: Ωarag = 1.28, Ωcal = 2.07 
2: Ωarag = 0.63, Ωcal = 1.02
3: Ωarag = 0.24, Ωcal = 0.39 

Embryo 
two-

hour post 
fertilization 

through 
hatch

0 dph: 
Total length (↑)2,3; 
Muscular depth (↑)2,3; 
Yolk size (↓)2,3; 
Oil globular size (↓)2,3

    Chambers et al., 2014

1: 775
2: 1,808
3 : 4,714 

1: 7.8
2: 7.5
3: 7.1

1: Ωarag = 1.28, Ωcal = 2.07  
2: Ωarag = 0.63, Ωcal = 1.02
3: Ωarag = 0.24, Ωcal = 0.39 

Larvae 
one-day 

post hatch 
(dph) 

through 
28 dph 

(initiation 
of meta-

morphosis)

Larval survival ( );

7 and 14 dph: 
Total length (↑)2,3; 
muscular depth (↑)2,3; 
mandible size (↑)2,3;

21 dph: 
Morphological 
 measurement ( );

28 dph: 
Larval size (↑)2; 
Developmental stage (↑)3; 
Lesions of gastrointestinal  
 tract, pancreas, gill, eye, 
 kidney, and heart ( );
Liver abnormalities (↑)3 

    Chambers et al., 2014

Atlantic 
longfin 
squid

Doryteuthis 
pealeii

1: 390
2: 2,200

1: 7.9
2: 7.3

1: Ωarag = 1.68
2: Ωarag = 0.52 20 days

Hatching time (↑)2; 
Mantle length (↓)2; 
Statolith area (↓)2; 
Statolith condition (↓)2

    Kaplan et al., 2013

Bay scallop

Argopecten 
irradians

1: 390
2: 750
3: 1500

1: 8.1
2: 7.8
3: 7.5

1: Ωarag = 3.06, Ωcal = 4.8
2: Ωarag = 1.87, Ωcal = 2.9
3: Ωarag = 0.91, Ωcal = 1.41

21 days
Survival (↓)2,3; 
Metamorphosis (↓)2,3; 
Growth (↓)2,3

    Talmage and Gobler, 2009

1: 250
2: 390
3: 750
4: 1500 

1: 8.2
2: 8.1
3: 7.8
4: 7.5

1: Ωarag = 3.34, Ωcal = 5.18  
2: Ωarag = 2.94, Ωcal = 4.55  
3: Ωarag = 1.81, Ωcal = 2.81  
4: Ωarag = 1.07, Ωcal = 1.66

40 days

Survival (↓)3,4; 
Metamorphosis (↓)3,4; 
Growth (↓)3,4; 
Lipids (↓)3,4; 
Shell thickness (↓)3,4; 
Shell integrity (↓)3,4

    Talmage and Gobler, 2010

1: 509
2: 1987

1: 7.9
2: 7.4

1: Ωarag = 2.26
2: Ωarag = 0.74 7 days Survival (↓)2; 

Shell length (↓)2
    White et al., 2013

1: 480
2: 2600

1: 8.0
2: 7.3

1: Ωarag = 2.5-2.7
2: Ωarag = 0.6-0.7 7 days Survival (↓)2; 

Shell length (↓)2
White et al., 2014

1: 237
2: 397
3: 753 

1: 8.20
2: 8.08
3: 7.81

1: Ωarag = 1.89, Ωcal = 2.94
2: Ωarag = 1.71, Ωcal = 2.6
3: Ωarag = 1.01, Ωcal = 1.55

15–35 
days

Calcium uptake (↓)2; 
RNA:DNA (↓)2,3; 
Growth (↓)3; 
Survival (↓)2

Growth (↓)2   Gobler and Talmage, 2013

SYMBOL EXPLANATIONS: NR = Not reported; ↑ = Significant positive response to increased pCO2; ↓ = Significant negative response to increased pCO2; 
 = No significant response to increased pCO2
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respiration) time scales. Carbonate vari
ability within different time scales can 
impact different biological functions. 
For example, hourly or daily variabil
ity could impact respiration or net calci
fication, while seasonal variability could 
impact fecundity, larval development, 
and settlement processes. Without a high 
resolution observing network to monitor 
existing carbonate chemistry over these 
various time scales, it is difficult to pre
dict how organisms in the New England/
Nova Scotia region will respond to future 
OCA. The observed responses of marine 
species in the New England/Nova Scotia 
region to increased pCO2 conditions 
(decreased pH and Ωarag) are based 
mainly on single species, single stressor 
laboratory experiments (Table  1; online 
Supplemental Table  S1). The majority of 
these studies were performed on popula
tions from outside of the New  England/
Nova  Scotia region. There have not 
been any studies using New  England/
Nova Scotia native populations living pri
marily in the Gulf and Shelf waters. In the 
following text, we provide a brief synopsis 
of research findings to date.

 
OCA Effects on Mollusks 
As calcifiers, mollusks are at particular 
risk from OCA. Among New  England/
Nova  Scotia bivalve species tested 
(regardless of source population), all but 
the ocean quahog Artica islandica are 
negatively affected, exhibiting slowed 
shell growth and/or calcification, some
times across multiple life stages. While 
most juvenile and adult bivalves in 
this region seem capable of surviv
ing OCA until it reaches extreme levels 
(pCO2 > 3,500 µatm), the larval stages are 
highly sensitive. Though these high pCO2 
levels may seem extreme, current near
shore/coastal processes regularly yield 
similar values, particularly within urban
ized estuaries, and clearly represent waters 
undersaturated with respect to aragonite 
(i.e., Ωarag <1.0). Specifically, larval stages 
of the hard clam (Mercenaria mercenaria), 
eastern oyster (Crassostrea virginica), and 
bay scallop (Argopecten irradians) show 

elevated mortality at moderatetohigh 
levels of CO2 (750–1,500 µatm pCO2). 
Further, larvae of these species surviving 
high CO2 (low Ωarag) exposure are smaller 
and generally less fit, lifehistory charac
teristics that would likely translate into 
high mortality rates among early stage 
juveniles (Marshall et al., 2003). The high 
sensitivity of larvae to OCA could repre
sent a bottleneck for individuals exposed 
to this stressor (Schneider et  al., 2003). 
This individual effect could translate into 
strong populationlevel effects in species 
for which population dynamics are sen
sitive to larval survival. Similarly, low 
biological sensitivity in adults can also 
translate into populationlevel effects for 
species exhibiting population dynamics 
that are strongly dependent on adult sur
vival (i.e., longlived species).

 
OCA Effects on Crustaceans
Crustaceans represent a commercially 
and ecologically valuable group of spe
cies in the New  England/Nova  Scotia 
region. However, commercially import
ant crustaceans from this region have 
rarely been studied with respect to OCA. 
The only two studies on the American 
lobster (Homarus americanus) found 
opposite effects of pCO2 on different life 
stages. Keppel et al. (2012) found a neg
ative impact on larval carapace length, 
while Ries et  al. (2009) found a positive 
impact on juvenile calcification. Ries et al. 
(2009) also reported the same result for 
two other decapod crustacean taxa, blue 
crabs (Callinectes sapidus) and shrimp 
(Penaeus plebejus). The consistent posi
tive responses of the three decapod taxa to 
elevated CO2 in Ries et al. (2009) set them 
apart from other invertebrates and fishes 
that responded negatively to acidifica
tion in that study. However, the two stud
ies of the American lobster to date have 
questionable relevance to natural condi
tions, as they were conducted at tempera
tures above the normal range that the 
majority of lobsters in the New England/
Nova Scotia region would encounter for 
any prolonged period of time.

The effects of increased CO2 on adult 

crustacean survival appear to be species 
and life stagespecific. In some cases, the 
effect is populationspecific. Population 
specificity appears to be related to the nat
ural variability of local carbonate condi
tions, with populations naturally exposed 
to highly variable conditions less likely to 
be affected by OCA (Pansch et al., 2014). 
Therefore, the source population used in 
a study is an important factor when con
sidering OCA effects on New  England/
Nova  Scotia species as the responses of 
populations within this region may dif
fer from those observed for populations 
from other regions.

 
OCA Effects on Other 
Benthic Invertebrates 
Many studies have focused on the sen
sitivity of echinoderms, while research 
on other taxonomic groups of ben
thic invertebrates is scant to absent. Of 
the echinoderms, the green sea urchin 
Strongylocentrotus droebachiensis has 
received the most attention. While the vast 
majority of studies have considered only 
adults, the effects on the green urchin are 
overwhelmingly negative at all life stages. 
Only Dupont et  al. (2013) have consid
ered multiple life stages of the green sea 
urchin in the same experiment, showing 
that carryover effects can exacerbate the 
negative impact of high CO2 (low Ωarag) 
on larvae and juveniles, but this is only 
one study and linkages between life stages 
need to be further tested.

Among nonechinoderm benthic 
invertebrates, a general trend is that non
calcifying species fare better than cal
cifying species. For example, the non
calcifying annelid clam worm Alitta virens 
was not affected by reduced sea water pH 
(Widdicombe and Needham, 2007), but 
annelids forming calcium carbonate tubes 
(Spirorbis spirobis and Hydroides spp.) 
showed negative effects (Ries et al., 2009; 
Lane et al., 2013; Saderne and Wahl, 2013).

 
OCA Effects on Finfish 
Only four finfish species from the 
New  England/Nova  Scotia region have 
been examined for OCA effects to date, 
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and only one of them, summer floun
der (Paralichthys dentatus), is signifi
cantly commercially exploited. Chambers 
et  al. (2014) found that summer floun
der embryonic survival was significantly 
reduced by exposure to increased pCO2 
conditions. Naturally, summer flounder 
egg buoyancy varies with the specific grav
ity of the seawater and with variations in 
the composition of eggs, especially lipid 
to nonlipid ratio, resulting in eggs being 
found anywhere from 10 –110 m, depend
ing on the season. Although growth and 
developmental rates were altered, larval 
survival was unaffected.

Atlantic cod (Gadus morhua) has been 
examined for OA effects more extensively 
than any North Atlantic fish species but 
only with fish sourced from the north
eastern Atlantic. Using offspring from a 
population of cod from the Baltic Sea—a 
region of relatively low Ωarag—Frommel 
et al. (2010, 2013) found either no or very 
modest effects on cod sperm, embryos, 
and young larvae. Working with off
spring from a population of cod from the 
Norwegian coast, however, Frommel et al. 
(2012) and Maneja et al. (2013a,b) found a 
variety of negative effects on older larvae, 
highlighting the possible importance of 
differences in population source, duration 
of exposure, and developmental stages 
inspected to the observed response.

Murray et  al. (2014) evaluated the 
influence of natural variation in water 
chemistry and parental experience in the 
susceptibility of offspring to elevated CO2 
levels. Offspring of Atlantic silverside 
obtained from adults collected early in 
the spring spawning season at relatively 
low CO2 levels had reduced survival and 
growth when challenged with elevated 
CO2 levels in the laboratory. In contrast, 
offspring from adults collected later in 
the spring—concurrent with seasonally 
increasing CO2 levels—were decreasingly 
susceptible to the same experimental lab
oratory CO2 conditions.

When effects of high CO2 exposure 
are expressed in finfish, they are often 
sublethal, even at the highest CO2 levels. 
Sublethal should not be misinterpreted as 

insignificant. Often, sublethal effects have 
longerterm consequences on population 
health through a cascade of indirect eco
logical effects. Furthermore, the original 
habitat of test species, specifically the nat
ural variability in water carbonate chem
istry, may be predictive of a species’ vul
nerability to future OCA. As the above 
examples of cod and Atlantic silverside 
show, fish that currently occupy habitats 
of naturally low and variable Ωarag may 
be more tolerant of future OCA, illus
trating the need for a more comprehen
sive observing system to better character
ize and monitor contemporary carbonate 
chemistry conditions in coastal regions. 

 
OCA Effects on Zooplankton 
Copepods and pteropods are the two 
groups of zooplankton most often stud
ied in relation to OCA because they are 
important food sources for higher tro
phic levels. Within the copepod literature, 
the trend has been to use extremely high 
pCO2 levels (up to >10,000 ppm), with the 
rationale that these levels represent con
ditions of leakage from potential carbon 
sequestration sites. Copepods appear to 
be relatively robust to atmospheric pCO2 
levels up to about 3,500 ppm (Ω < 1.0). For 
example, Calanus finmarchicus survival 
is not affected by pCO2 levels less than 
7,000 ppm (Pedersen et  al., 2013, 2014) 
and survival of Acartia tonsa copepo
dites and adults is not affected by pCO2 
levels less than 3,000 ppm, although the 
A. tonsa naupliar mortality rate increases 
at 1,000 µatm (Cripps et al., 2014). In con
trast to copepods, pteropods are highly 
sensitive to increased pCO2 conditions 
(Bednaršek et al., 2014). In particular, cal
cification is negatively affected at both the 
larval and adult life stages. Furthermore, 
shell dissolution has been shown at lar
val, juvenile, and adult life stages. Smaller 
shells or shells with reduced integrity due 
to dissolution will have ecological (food 
web) impacts for pteropods. 

 
OCA Effects on Phytoplankton 
Phytoplankton play an important role 
in modulating shortterm variability in 

carbonate chemistry. In addition, many 
organisms of socioeconomic importance 
in the New  England/Nova  Scotia region 
rely directly and/or indirectly on phyto
plankton for nutrition, and OCA may 
alter the nutritional value of phytoplank
ton (Rossoll et al., 2012). Diets composed 
of phytoplankton with elevated molar 
ratios of C:P and N:P or low in essen
tial polyunsaturated fatty acids (PUFAs) 
as a result of prey exposure to OCA con
ditions could potentially result in delete
rious effects on development and growth 
of grazers due to poor nutritional qual
ity (Sargent et al., 1999; Sterner and Elser, 
2002; Martin et al., 2008).

In laboratory unialgal experiments, 
responses of phytoplankton growth rates 
to OA appear to be speciesspecific and 
includes increases, decreases, or no signif
icant change to those rates. In a series of 
experiments with phytoplankton species 
commonly found in the New  England/
Nova  Scotia region, there was gener
ally no change in growth rates between 
presentday and year 2100 predicted 
CO2 levels (750–1,000 µatm; Andrew 
King,  Norwegian Institute for Water 
Research, pers. comm., August 30, 2014).

Phytoplankton cultures grown at high 
CO2 levels generally show either no change 
or ~10–40% higher C:P and N:P molar 
ratios (Hutchins et al., 2009). Several spe
cies from the NECAN study area also 
reflect this pattern, with diatoms not 
exhibiting a significant change in C:P and 
N:P molar ratios when grown at elevated 
CO2 levels. Several species, however, had 
significantly lower C:P and higher N:P 
ratios when grown at geological maxima 
CO2 levels (~3,000–4,000  µatm pCO2), 
which may also represent levels experi
enced within contemporary nearshore 
environments where episodic coastal 
acidification events can occur.

Relatively little is known about the influ
ence of CO2 on essential PUFAS that are 
synthesized by phytoplankton. Elevated 
CO2 levels (750–1,000  µatm pCO2,sw) 
were shown to result in a ~50% decrease 
in nutritious PUFAs in a diatom species 
(Rossoll et al., 2012) and a slight increase 
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(~5%) in PUFAs in a natural assem
blage from outside the New  England/
Nova Scotia region (Leu et al., 2013).

 
OCA Effects on Macrophytes 
Unlike invertebrate and finfish species 
whose responses to OCA have been doc
umented on populations sourced from 
within the New  England/Nova  Scotia 
region, there are no published OA studies 
using macrophyte (macroalgae and sea
grass) populations from within this region; 
most work has been done using popula
tions from the Pacific Northwest or from 
Europe. Our limited ability to predict how 
New  England/Nova  Scotia macrophytes 
will respond to OA is additionally com
plicated by the variety of physiological 
processes that can potentially be directly 
affected by elevated seawater pCO2. It 
is difficult to generalize response trends 
among the 28 New England/Nova Scotia 
conspecifics investigated from other 
regions. Nonetheless, there are consis
tent trends across two major functional 
groups (i.e., calcareous species vs. “fleshy” 
algae and marine plants) to CO2 enrich
ment among macrophyte species from the 
NECAN study area. The vulnerability of 
calcareous algae and the increased pro
ductivity among fleshy algae and marine 
plants in response to elevated pCO2 are 
consistent with several metaanalyses 
from other ecosystems (Kroeker et  al., 
2010, 2013; Johnson et al., 2014).

Each of the region’s six coralline spe
cies studied responded negatively to 
pCO2 elevation in terms of maintain
ing structural integrity of calcareous tis
sue. However, there was a mixed response 
across species for various parameters of 
photosynthetic performance. Only cer
tain aspects of photosynthesis (e.g., max
imum relative electron transport rate and 
light saturation points) were enhanced 
by CO2 enrichment in a twoweek study 
of Corallina officinalis (Yildiz et  al., 
2013); otherwise, the remaining species, 
exposed for longer periods to treatment 
conditions, experienced no change or 
reduction in photosynthetic capacity.

Among the fleshy algae and marine 

plant species in this region, the responses 
to elevated pCO2 were largely positive. 
Ten of the 14 species examined grew 
faster (or added more biomass) under 
treatment conditions, while the remain
der were unaffected or lost overall bio
mass. Interestingly, the two kelp species 
that lost biomass during these experi
ments (Saccharina latissima and Fucus 
vesiculosus) are economically import
ant species in the NECAN study area 
and globally. Faster growth rate may be 
attributed to release from inorganic car
bon limitations (Koch et al., 2013).

Other Considerations of  
Biological Response to OCA 
The vast majority of studies on the bio
logical responses of NECAN study area 
species have focused on a single life 
stage of an organism without consider
ing links between different developmen
tal stages of the organism’s life cycle or 
the role that parental exposure may play 
in the organismal response. Such multi
lifestage and even multigenerational 
studies will be essential in order to proj
ect the population’s response to OCA (see 
Breitburg et al., 2015, in this issue). The 
few studies that have considered multi
ple life stages make it clear that examin
ing biological response through multiple 
life stages provides insight into laterstage 
responses that would not have been 
seen with singlelife stage experiments 
(e.g., McDonald et al., 2009; Gobler and 
Talmage, 2013). Furthermore, mater
nal exposure to stressful environmen
tal conditions during gametogenesis can 
affect investment in reproduction, influ
encing offspring survival and fitness 
(Marshall et al., 2008). In the context of 
OCA, effects of maternal exposure have 
rarely been considered, except in studies 
of copepods. Thus, examination of mater
nal effects among noncopepod species 
in the NECAN study area remains an 
important research priority.

In addition to OCA, in the coming 
century marine organisms will face addi
tional stressors, including rising tem
perature, declining oxygen levels, and 

decreasing salinity (Doney et  al., 2012). 
As a result, studies focused on OCA 
alone may be inadequate for predicting 
how NECAN ecosystems will respond 
to climate change. Breitburg et al. (2015, 
in this issue) provide examples of syner
gistic and antagonistic impacts of multi
ple stressors including OCA on marine 
organisms and suggest multiple stressor 
research priorities.

Knowing how an organism responds to 
OCA is not the same as being able to pre
dict how an ecosystem will respond. In 
the NECAN study area, research has been 
primarily limited to singlespecies exper
iments and a few mesocosm studies. Few 
controlled experimental studies of OA at 
higher levels of organization (e.g.,  com
munity and ecosystem) have been con
ducted. The uncertainty associated with 
scaling from singlespecies studies to 
ecosystemlevel effects is explored by 
Busch et al. (2015, in this issue). A more 
robust strategic approach that includes 
ecosystemlevel, multispecies designs; 
takes advantage of natural CO2 gradients 
in marine habitats; and integrates results 
from laboratory and field experiments is 
needed in order to better understand and 
predict ecosystem responses to future 
CO2 conditions (Andersson et  al., 2015, 
in this issue).

KEY KNOWLEDGE GAPS 
AND RESEARCH NEEDS
In its infancy, the field of research into the 
biological response to increased CO2 has 
focused largely on singlespecies, single 
stressor, singlelife stage, laboratory 
based experiments. In order to more 
accurately forecast how changing pCO2 
conditions will affect the New  England/
Nova Scotia region’s ecosystems, it is time 
to move beyond these limitedfocus stud
ies. We propose the following topics, in 
no particular order, as research priorities 
for understanding biological responses in 
the New  England/Nova  Scotia region to 
OCA conditions.
• Studies on commercially import-

ant species to evaluate their sensi-
tivity to OCA conditions, including 
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American lobster (Homarus ameri-
canus), blue crab (Callinectes sapidus), 
Jonah crab (Cancer borealis), rock crab 
(Cancer irroratus), horseshoe crab 
(Limulus polyphemus), sea scallop 
(Placopecten magellanicus), and many 
species of finfish, using populations 
from within the NECAN study area.

• Multistressor studies considering 
increased pCO2 (decreased Ωarag) com
bined with one or more other stressors 
such as temperature, hypoxia, salin
ity, ultraviolet exposure, or trace metal 
exposure (see Breitburg et al., 2015, in 
this issue) specific to this region.

• Multiple life-stage and/or multi- 
generational studies that follow one 
or more organisms through multiple 
life stages exposed to increased pCO2 
(see Breitburg et al., 2015, in this issue).

• Trophic interaction/indirect effect 
studies that consider how species’ 
interactions with other species or with 
their environments may change as a 
result of increased pCO2.

• Studies considering species 
responses to variable pCO2 con-
ditions to better reflect conditions 
in nature. 

• Process investigations to quantify 
the relative magnitude of the effects of 
each of the primary forcing agents (air
sea exchange, upwelling, river/stream, 
estuary, benthic/pelagic biology, ver
tical mixing) on Ωarag dynamics and 
trends across the region.

• Climate-quality monitoring of the net 
changes in carbonate chemistry using 
a strategic design that permits quan
tifying net changes in the dominant 
forcing terms, including the boundary 
conditions (e.g., Scotian Shelf chemis
try, upwelling waters, rivers).

• Establish carbonate chemistry 
long-term trends across the region 
including hindcasting to the pre 
industrial period, forecasting impend
ing conditions at weekly to sea
sonal scales, and projecting longterm 
changes in carbonate chemistry under 
IPCC scenarios. 

• Field studies to help us move from 

singlespecies effects to ecosystem 
effects and improve our understanding 
of how OCA affects organisms in their 
natural environments.

Regional Capacity to Bring to Bear
Considerable OCA research and mon
itoring capacity is available in the 
New  England/Nova  Scotia region 
includes laboratories, OA monitoring 
buoys and stations, and Ocean Survey 
Vessel (OSV) sampling locations and 
continuous underway monitoring, all of 
which provide biological and/or carbon
ate chemistry data relevant to OCA mod
eling and research (Figure  6). However, 
with the exception of a few fixed auton
omous stations, the sampling frequency 
throughout much of the region is too low 
to adequately capture shortterm epi
sodic events that could pose more acute, 
immediate concerns to impacted indus
tries and managers. As an example, the 
East Coast Ocean Acidification (ECOA, 
2015) cruise (purple dashed line and dia
monds in Figure 6) represents a reoccu
pation of prior Gulf of Mexico and East 
Coast Carbon Cruises (GOMECC, 
2007, 2012), and, while it offers consid
erable spatial coverage, it is scheduled 

to be repeated only once every four 
years. Furthermore, even in cases where 
highfrequency observations are being 
recorded, they typically measure only 
one carbon parameter (e.g.,  pCO2) and 
do not permit realtime determination 
of Ωarag. The coverage is also heteroge
neous throughout the region. For exam
ple, within a 20 km radius of Portsmouth, 
NH, three stations monitor the full water 
column, whereas the closest station to 
the whole State of Rhode Island is at the 
Martha’s Vineyard Coastal Observatory—
over 70 km away and monitoring only 
near the bottom. To date, most observing 
efforts have emphasized surface over sub
surface measurements as a consequence 
of cost and technical feasibility, despite 
the fact that many of the impacted spe
cies may reside in the benthos. The few 
shortduration, timeseries studies that 
document subsurface conditions (i.e.,  at 
Stellwagen Bank; Salisbury et  al., 2012) 
reveal important coupling between sur
face blooms and subsurface remineraliza
tion, whereby enhanced saturation states 
in the surface, which may be beneficial 
to some organisms, may yield corrosive 
conditions in the subsurface. So full water 
column monitoring can be an important 

FIGURE 6. Existing capacity for ocean acidification research and monitoring in the New England/
Nova Scotia region. Shown are laboratories researching ocean acidification (red squares), along 
with its effects on biology (blue squares). Monitoring of carbonate chemistry parameters by buoys 
and vessels and approximate cruise tracks and sampling waypoints are color coded according to 
frequency of observation/reoccupation. 
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requirement in some instances.
In order to better understand how OCA 

is unfolding throughout the NECAN 
study area, a more comprehensive observ
ing system is needed to provide enhanced 
spatial and temporal coverage as well as 
subsurface monitoring capability. This 
system will require leveraging existing 
capacity as well as creating opportunity 
for expansion of the system. NECAN is 
already working toward improving the 
research and monitoring community net
work by bringing together project man
agers from government, academia, and 
industry to synthesize regional data that 
can aid in recommending regional prior
ities. While not intended as a data repos
itory, NECAN encourages its mem
bers to leverage existing observational 
networks (e.g.,  Northeastern Regional 
Association of Coastal Ocean Observing 
Systems, NERACOOS) in order to meet 
the emerging needs of the research and 
stakeholder communities. 

Recommendations for advancing 
research include taking advantage of 
ships of opportunity, volunteer observing 
programs, and equipping already inplace 
buoys with additional sensors. In order to 
understand the system as a whole, mon
itoring must be conducted at multiple 
depths throughout the region as well as 
leveraged for additional data through all 
possible avenues. 

CONCLUSIONS
The NECAN study area represents a sys
tem at potentially elevated risk to contin
ued OCA in coming years. The poorly 
buffered waters of the region will likely 
grow increasingly sensitive to acute car
bonate chemistry perturbations on 
account of increasing amounts of fresh
water supplied through Arctic outflow 
to the north and due to increases in win
ter precipitation (both driven by cli
mate change). These freshening trends 
could more frequently result in corro
sive river plumes exhibiting greater spa
tial extent over time. However, in both 
nearshore and Gulf/Shelf systems, the 
effects of net community production are 

significant in controlling shortterm car
bonate dynamics, and without improved 
predictive capacity for how nitrogen, car
bon, and phosphorus inputs will change 
over time, we will be challenged to accu
rately forecast ocean and coastal acid
ification. Furthermore, considerable 
uncertainty remains with regard to how 
the NECAN ecosystems will respond to 
OCA. There is an urgent need to greatly 
expand OCA monitoring capacity and 
biological response studies that are most 
relevant to the New England/Nova Scotia 
region and better couple these studies to 
an enhanced observing system that better 
characterizes the contemporary dynam
ics of the system. 

SUPPLEMENTARY MATERIALS. Supplemental 
Methods and Supplemental Table  S1 are available 
online at http://www.tos.org/oceanography/archive/ 
28-2_gledhill.html.
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