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The continental shelf region off the west coast of North America is seasonally exposed to water with a
low aragonite saturation state by coastal upwelling of CO2-rich waters. To date, the spatial and temporal
distribution of anthropogenic CO2 (Canth) within the CO2-rich waters is largely unknown. Here we adapt
the multiple linear regression approach to utilize the GO-SHIP Repeat Hydrography data from the
northeast Pacific to establish an annually updated relationship between Canth and potential density. This
relationship was then used with the NOAA Ocean Acidification Program West Coast Ocean Acidification
(WCOA) cruise data sets from 2007, 2011, 2012, and 2013 to determine the spatial variations of Canth in
the upwelled water. Our results show large spatial differences in Canth in surface waters along the coast,
with the lowest values (37e55 mmol kg�1) in strong upwelling regions off southern Oregon and northern
California and higher values (51e63 mmol kg�1) to the north and south of this region. Coastal dissolved
inorganic carbon concentrations are also elevated due to a natural remineralized component (Cbio),
which represents carbon accumulated through net respiration in the seawater that has not yet degassed
to the atmosphere. Average surface Canth is almost twice the surface remineralized component. In
contrast, Canth is only about one third and one fifth of the remineralized component at 50 m and 100 m
depth, respectively. Uptake of Canth has caused the aragonite saturation horizon to shoal by approxi-
mately 30e50 m since the preindustrial period so that undersaturated waters are well within the regions
of the continental shelf that affect the shell dissolution of living pteropods. Our data show that the most
severe biological impacts occur in the nearshore waters, where corrosive waters are closest to the sur-
face. Since the pre-industrial times, pteropod shell dissolution has, on average, increased approximately
19e26% in both nearshore and offshore waters.

Published by Elsevier Ltd.
1. Introduction

Since the beginning of the Industrial Revolution, the global
oceans have absorbed about 28% (~550 billion tons) of the total
ely).
l Laboratory, USA.

et al., Chemical and biologica
http://dx.doi.org/10.1016/j.ec
anthropogenic carbon dioxide (CO2) emissions (Canadell et al.,
2007; IPCC, 2013; Le Qu�er�e et al., 2015). This absorption of atmo-
spheric CO2 has increased ocean acidity in a process referred to as
“anthropogenic” ocean acidification (OA). Over the past 250 years,
the pH of open-ocean surface waters has decreased by approxi-
mately 0.11 units, equivalent to an increase of about 28% in
hydrogen ion concentration (Gattuso et al., 2015). When CO2 enters
the ocean, it reacts with water to form carbonic acid, which
l impacts of ocean acidification along thewest coast of North America,
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Fig. 1. Map of the station locations for the 2007 West Coast cruise. The black line
shows the cruise track. The 2011, 2012, and 2013 cruises included subsets of these
stations and, in some cases, a few additional stations.
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consumes carbonate ions (CO3
2�) via the release of protons. In direct

correspondence with these changes, the CO3
2� concentration has

declined about 16% from preindustrial values through the year
2000. Under a “business-as-usual” CO2 emission scenario, surface
ocean pH is expected to decline by another 0.3e0.4 units by the end
of the century and CO3

2� concentration is expected to decline by 50%
over the same period (Feely et al., 2004, 2009; Orr et al., 2005;
Doney et al., 2009a,b; IPCC, 2013; Gattuso et al., 2015).

Organisms that produce calcium carbonate (CaCO3) shells or
skeletons made of aragonite or calcite are expected to encounter
increasing physiological challenges as the saturation state of
aragonite and calcite decreases due to OA (Fabry et al., 2008;
Guinotte and Fabry, 2008; Hofmann and Todgham, 2010; Gaylord
et al., 2011; Barton et al., 2012; Bednar�sek et al., 2012a, 2014a,b;
Hettinger et al., 2012; Frieder et al., 2014; Gattuso et al., 2015;
Waldbusser et al., 2015; Somero et al., 2016). The saturation state
of aragonite (Uar) and calcite (Ucal) is a function of the concentra-
tions of calcium (Ca2þ) and CO3

2�, and pressure-dependent stoi-
chiometric solubility product, Ksp

* : (U ¼ [Ca2þ][CO3
2�]/Ksp

* ) (Mucci,
1983), such that Uar and Ucal will decline as more CO2 is taken up
by the oceans. At U ¼ 1, carbonate minerals are in equilibriumwith
surrounding seawater; at U > 1, precipitation or preservation of
carbonate minerals is thermodynamically favored; and at U < 1,
dissolution is favored.

Recent models suggest that the shallower waters along the
California Current Large Marine System (CCLME) will become un-
dersaturated more often, and for longer durations, over the next
several decades to a century (Gruber et al., 2012; Hauri et al., 2013;
Turi et al., 2016). Persistence of acidified water in the coastal waters
of the west coast of North America could have profound conse-
quences for marine organisms, ecosystems, and the ecosystem
services of this region (Doney et al., 2009a; Gattuso and Hansson,
2011; Feely et al., 2012a; Ekstrom et al., 2015; Gaylord et al.,
2015; Somero et al., 2016). Increasing CO2 may have significant
biological and ecological effects, with potential feedbacks to
biogeochemical cycles. Declines in CaCO3 saturation state, partic-
ularlyUar, will pose increasing physiological challenges to calcifying
invertebrates such as pteropods, bivalves, and echinoderms
(Wootton et al., 2008; Hettinger et al., 2012; Kroeker et al., 2013;
Frieder et al., 2014; Bednar�sek et al., 2012a, 2014a,b; Waldbusser
et al., 2015; Barton et al., 2015; Somero et al., 2016).

Pteropods are an important food source for organisms across
lower (e.g.macrozooplankton) and higher trophic levels in the
oceans. In the North Pacific Ocean, pteropods are seasonally sub-
stantial portion of the diets of pink and chum salmon (Groot and
Margolis, 1991), sablefish and rock sole (Armstrong et al., 2005;
Aydin et al., 2005). Moreover, they are among the species most
affected by ocean acidification, with shell dissolution already
occurring in the natural environment (Bednar�sek et al., 2014a).
Consequently, pteropods are ideal sentinel organisms to study how
the dissolution changes since the pre-industrial times are affecting
aragonite dissolution in the CCLME, and help to identify which of
the regions are the most vulnerable to the anthropogenic changes.
In this paper we estimate the amount of anthropogenic CO2 (Canth)
in the CCLME region and determine its impact on pteropod shell
dissolution comparatively for cruises in 2011 and 2013.

1.1. Physical and biogeochemical setting

The CCLME is a large-scale oceanographic feature along thewest
coast of North America, an eastern boundary current extending
from northern Vancouver Island in Canada to Punta Eugenia in
Mexico, and landward into large estuarine systems such as the San
Francisco Bay and the Salish Sea (Fig. 1). The coastal waters off the
west coast of North America are strongly affected by seasonal
Please cite this article in press as: Feely, R.A., et al., Chemical and biologica
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upwelling, which typically begins in early spring when the Pacific
High moves into the subarctic North Pacific, resulting in a
strengthening of the northwesterly winds. These winds drive net
surface waters offshore via Ekman transport, which induces the
upwelling of low pH, nutrient- and CO2-rich, intermediate depth
(100e300 m) offshore waters onto the continental shelf (Hales
et al., 2006; Feely et al., 2008; Gruber et al., 2012; Harris et al.,
2013; Hauri et al., 2013; Turi et al., 2016). The upwelling lasts
from spring to early or late fall, when winter storms return. Within
the CCLME, the upwelling supports highly productive communities
and fisheries on the continental shelf and slope, and in the estuaries
(Hickey, 1979; Thomson et al., 1989; Thomson and Krassovski,
2010). Thus, while upwelling plays a defining role in CCLME
biogeochemistry, productivity, and ecology, it also contributes to
the impacts of local and regional oceanographic processes that
exacerbate the effects of anthropogenic OA. Here we use the term
“corrosive” to refer to waters that are undersaturated with respect
to aragonite (Uar < 1), a condition that results from some combi-
nation of: 1) oceanic uptake of anthropogenic CO2, and 2) build-up
of CO2 from the natural respiration processes in the ocean interior
(Cbio) that occur in offshore waters prior to upwelling or on the
continental shelf after those interior waters have upwelled. These
processes are already affecting coastal regions such that corrosive
waters have previously been observed in large coastal regions
including Arctic and Alaskan coastal waters, as well as the CCLME
(Feely et al., 2008; Bates et al., 2013; Mathis et al., 2014a,b; 2015).

Many of the ecosystems within the CCLME are particularly
vulnerable because of the combined effects of acidification,
warming, upwelling, and hypoxia, which are expected to increase
under anthropogenic climate change (Rykaczewski and Dunne,
2010; Somero et al., 2016). The term “hypoxia” implies dimin-
ished levels of oxygenation under which many species of fish and
invertebrates are negatively impacted. Conditions ranging from
hypoxic (<65 mmol kg�1) to anoxic (0 mmol kg�1) have been
l impacts of ocean acidification along thewest coast of North America,
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observed in near-bottom waters on the inner continental shelf
within the CCLME, particularly in the late summer and early fall
months when respiration-induced oxygen depletions are at their
maximum extent (Grantham et al., 2004; Hales et al., 2006; Chan
et al., 2008; Booth et al., 2012; Siedlecki et al., 2016). High CO2
concentrations and hypoxia are linked mechanistically because
aerobic respiration of organic matter consumes oxygen and pro-
duces CO2 in approximate stoichiometric equivalence (170:117)
(Anderson and Sarmiento, 1994). Thus, processes that create
aquatic oxygen deficits can also exacerbate corrosive conditions for
calcareous organisms.

2. Methodology

2.1. Chemical methods

In the late spring of 2007 and late summers of 2011, 2012, and
2013 we conducted detailed observations of carbonate system
chemistry and other physical, chemical, and biological parameters
along the western North American continental shelf, both via ship-
based cruises and shore-based sampling (Fig. 1). Water samples
from the cruises were collected in modified Niskin-type bottles and
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analyzed under laboratory conditions for dissolved inorganic car-
bon (DIC), total alkalinity (TA), oxygen, and nutrients. During the
cruises in 2011 and 2013, samples were also measured directly for
pHT. DIC was analyzed using coulometric titration (Johnson et al.,
1987; DOE, 1994; Ono et al., 1998). TA was measured by the
potentiometric titration method (Millero et al., 1993; DOE, 1994;
Ono et al., 1998). Certified Reference Materials were analyzed
with both the DIC and TA samples as an independent verification of
instrument calibrations (Dickson et al., 2007). The ship-based DIC
and TA data are both precise and accurate to within 2 mmol kg�1.
The spectrophotometric method described in Byrne et al. (2010)
and Liu et al. (2011) was used to measure pH on the total scale
(pHT) for the 2011 and 2013 cruises. Shore-based measurements of
pHT from in-situ sensors and DIC and TA from discrete samples
were also provided through the OMEGAS (8 sites) and UC Davis
Coastal Transect (47 sites) projects, respectively. In-situ records
were collected using Durafet®-based sensors that were calibrated
against seawater and/or TRIS-based Certified Reference Materials.
Bottle samples were analyzed for DIC (via infrared CO2; Monterey
Bay Aquarium Research Institute) and TA (Metrohm 855 autoti-
trator), and were cross-verified with pH determined spectropho-
tometrically for pH, using the total pH scale. The saturation state of
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seawater with respect to aragonite was calculated from the DIC and
TA data using the program CO2SYS developed by Lewis andWallace
(1998), using the Lueker et al. (2000) carbonate constants, Dickson
(1990) for the KSO4, and Lee et al. (2010) for total boron. The
pressure effect on the solubility, for samples collected at depth, is
estimated from the equation of Mucci (1983), incorporating ad-
justments to the constants recommended by Millero (1995). Based
on the uncertainties in the DIC and TA measurements and the
thermodynamic constants, the uncertainty in the calculated Uar is
approximately 0.02. Oxygen analysis was conducted by modified
Winkler titration (Carpenter, 1965), and nutrients (nitrate, nitrite,
ammonium, phosphate, silicate) were frozen at sea and analyzed
using a Technicon AutoAnalyzer II (UNESCO, 1994) at Oregon State
University.
2.2. Pteropod shell dissolution

Pteropod shell dissolution was determined on shells collected
from 16 stations for the 2011 cruise and 20 stations during the 2013
cruise. The samples were stored in 90% buffered ethanol. Between
Please cite this article in press as: Feely, R.A., et al., Chemical and biologica
Estuarine, Coastal and Shelf Science (2016), http://dx.doi.org/10.1016/j.ec
15 and 30 pteropods of Limacina helicina were blindly picked from
samples selected randomly with no prior knowledge of station
location or carbonate chemistry conditions. Following the methods
described in Bednar�sek et al. (2012c), the shells were repeatedly
washed with distilled water before being subjected to chemical
shell dehydration, followed by a plasma etching procedure for
periostracum removal. All treated shells were analyzed for shell
dissolution using a scanning electron microscope (SEM) and iden-
tified for the presence of dissolution patterns and the proportion of
more severe types of shell dissolution (Type II and Type III).
Following the categorization scheme outlined in Bednar�sek et al.
(2012c), Type II dissolution indicates deeper penetrating dissolu-
tion that precedes Type III, which affects large parts of shell crys-
talline structure, making shells less compact and more fragile.
2.3. Estimating coastal Canth and Cbio

Seawater upwelling along the continental shelf of thewest coast
of North America comes from the thermocline waters of the North
Pacific subtropical and subarctic gyres. We therefore used the gyre
l impacts of ocean acidification along thewest coast of North America,
ss.2016.08.043
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thermocline Canth, estimated by Carter et al. (submitted) employing
the methods outlined in Supplementary Materials section SM1.1
(this paper) -to estimate upwelling water Canth for the years 2007,
2011, 2012, and 2013. This method is similar to the approach used
by Feely et al. (2008). Our approach for estimating coastal Canth and
biological remineralization C (Cbio) involves the following steps:

1. Open ocean Canth estimates are used to derive polynomials
relating thermocline Canth to potential density sq for both 2004
and 2013 along P02 (two polynomials) and in 2006 and 2015
along P16N (two additional polynomials). See Supplementary
Materials section SM1.2 for details on this step.

2. A grid of seawater properties shoreward of the 200 m depth
isobath is determined along the West Coast from our hydro-
graphic surveys in 2007, 2011, 2012, and 2013 using the pro-
cedure detailed in the Supplementary Materials section SM1.3.

3. The four polynomials determined in step 1 are used with the sq

estimates determined in step 2 to estimate Canth for all gridded
locations.

4. We interpolate among the four estimates from step 3 to obtain
sets of estimates specific to the 4 years of interest (2007, 2011,
Please cite this article in press as: Feely, R.A., et al., Chemical and biologica
Estuarine, Coastal and Shelf Science (2016), http://dx.doi.org/10.1016/j.ec
2012, and 2013) at each location. We interpolate among the four
polynomials both by date to select between the earlier and later
polynomials for each section, and by gridded seawater spiciness
to select between the P02 and P16 polynomials.

5. We directly estimate Cbio, or the amount of additional DIC pre-
sent as a result of organic matter remineralization, from
seawater properties using methods described in detail in Sup-
plementary Materials SM1.2.

These gridded properties are used for volume-weighted
seawater average properties. Also in SM1.2, the uncertainties in
these quantities are estimated to be of order ± (1s) 10 mmol kg�1,
yielding a 95% confidence interval of ~20 mmol kg/1. We refer to
the sum of Canth and Cbio as “enriched DIC.”

3. Results

3.1. Coastal distributions of acidified water

During the four cruises, various stages and strengths of up-
welling were observed from central Vancouver Island, Canada to
l impacts of ocean acidification along thewest coast of North America,
ss.2016.08.043



Fig. 5. Vertical sections of: (A) dissolved oxygen, (B) pCO2, (C) pHT, and (D) Uar along
the 2013 Line 6 stations off Newport, OR. Black dots indicate measurement locations
and the isolines lines in (A) and (B) show the potential density in kg m�3.

Fig. 6. Percentage of individuals affected by severe dissolution as a function of
aragonite saturation state (integrated over the upper100 m) for the 2011 (open circles)
and 2013 (closed circles) data. The dashed lines show the 95% confidence interval for
the logarithmic function.
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Baja California, Mexico. The observations revealed that, on average,
acidified, corrosive CO2-rich waters (insitu pHT < 7.75; U

ar <1.0; DIC
>2190 mmol kg�1) were upwelled from depths of 150e250 m to
depths as shallow as 20e200 m in most areas and close to the
surface in the region between northern California near Cape
Mendocino to Heceta Head, Oregon (Figs. 2e4). Maps of surface
ocean pHT and DIC during the four West Coast survey cruises show
that insitu pHT values ranged from 7.7 to 8.3, with the lowest pHT
values and highest DIC concentrations occurring in the upwelled
water near the coast (Figs. 2 and 3). Moving offshore, pHT values
quickly increase to open-ocean values ranging from 8.0 to 8.3. The
2011 pHT map includes complementary shore-based nearshore and
intertidal pHT data from the same period, collected using Durafet-
style autonomous sensors (Fig. 2), which reinforces the notion
that the greatest spatial variability of pHT appears in closest prox-
imity to the shore (Chan et al., submitted). The excellent consis-
tency among the intertidal, nearshore, and offshore data suggests
that the uptake of anthropogenic CO2, upwelling/mixing, and
respiration processes are the primary drivers of pHT distributions
along the coast. Our results for the four cruises follow the seasonal
patterns described by Chan et al. (submitted) from field data.
Consistent with those results, Turi et al. (2016) found similar pat-
terns in their hindcast biogeochemical model outputs, with higher
pH values in the spring and lower pH values in the late summer.
One exception is the low pHT, high O2, low U

ar values in surface
waters immediately seaward of the Columbia River Estuary in 2011,
2012, and 2013, which were dominated by the outflow of low
salinity, low alkalinity, and high DIC riverine water in the surface
layer (Evans et al., 2013).

The corrosive waters along the inner- and mid-shelf regions
were due to the combined impacts of anthropogenic CO2 uptake
and upwelling of respiration-enriched CO2 waters along the coast
(Figs. 4 and 5). Nearshore upwelled waters were characterized by
low-pH seawater (pH < 7.75) with U

ar values near or below 1.0 and
potential density >26.0 kg m3. In 2013, for example, along Line 6
offshore of Newport, Oregon, the 26.1 kg m3 potential density
surface shoaled from a depth range of 150e200 m offshore to the
surface near the coast (Fig. 5). This density surface was co-located
with isolines of U

ar ¼ 1.0, DIC ¼ 2190 mmol kg�1, and pH ¼ 7.75.
However, pH decreased, and DIC and the partial pressure of CO2
(pCO2) increased shoreward in the region surrounding this iso-
pycnal due to CO2 release from local remineralization of organic
matter. Upwelling of CO2-enriched seawater caused the entire
water column shoreward of the 50 m isobath along Line 6 (west
of Newport, OR) to become undersaturated with respect to arago-
nite (Fig 5D). The lowest U

ar values (<0.70) found shoreward of the
200 m isobath were observed in the near-bottom waters of the
mid-shelf region where respiration provides an additional CO2
contribution that decreases U

ar. The uptake of anthropogenic CO2
has caused the corrosive (Uar <1) waters to shoal by about 30e50 m
since preindustrial times such that they are within the density
layers that are currently being upwelled along the west coast of
North America (Feely et al., 2012b).

3.2. Pteropod dissolution and water chemistry

The water column hydrographic data were combined with the
chemical data for the nearshore and offshore regions and the
aragonite saturation state (Uar) was calculated for the upper 55m or
100 m of the water column in the nearshore and offshore, respec-
tively. Diel vertical migration of L. helicina is within this depth
range. The values from the region off Southern California were not
taken into account, as we did not have pteropod dissolution data for
that region. There was a strong negative linear correlation between
the percentage of pteropods with Type II and Type III dissolution
Please cite this article in press as: Feely, R.A., et al., Chemical and biologica
Estuarine, Coastal and Shelf Science (2016), http://dx.doi.org/10.1016/j.ec
shell impacts and Uar in 2011 and 2013 (Fig. 6, R2 ¼ 0.74, p < 0.001).
We have fitted the combined data (2011 and 2013) to a logarithmic
function and generated the equation: y ¼ �66.29 lnx þ 61.21
(R2 ¼ 0.74). This relationship was used for estimating the
l impacts of ocean acidification along thewest coast of North America,
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Fig. 7. Distribution of Canth in mmol kg�1 at the surface, 25 m, 55 m, and 105 m depth for the 2013 West Coast survey.

Table 1
Anthropogenic carbon (Canth), remineralized carbon (Cbio) and anthropogenic percentage of total enriched carbon (%Canth) by region (W:Washington, O: Oregon, NC: Northern
California, SC: Southern California), cruise year, and depth for averages of gridded coastal properties shoreward of the 200 m isobath (left columns) and for the northwestern
stations occupied offshore of each region (right columns). All values are expressed in mmol kg�1. Estimated average uncertainty is approximately ±10 mmol kg�1 (1s). Column
averages are calculated weighting all regions and years equally. Negative Cbio values suggest either net autotrophy or physically derived oxygen supersaturation.

Depths Grid average shoreward of 200 m isobath Northwestern station in region

0-10 m 50-60 m 100-110 m Surface 200 m

State Year Canth Cbio %Canth Canth Cbio %Canth Canth Cbio %Canth Canth Cbio %Canth Canth Cbio %Canth

W 2007 47 �27 232 47 85 35 34 131 21 47 �5 113 30 140 18
W 2011 51 97 34 47 125 27 36 149 20 54 0 101 33 133 20
W 2012 52 83 39 49 117 29 36 150 19 55 �7 114 30 154 16
W 2013 53 48 53 48 111 30 39 153 20 55 �6 113 31 159 16
O 2007 47 24 66 44 93 32 34 147 19 48 �9 122 32 117 21
O 2011 52 31 62 42 114 27 34 158 18 52 �5 112 35 99 26
O 2012 54 18 75 48 88 35 39 131 23 53 �1 102 33 143 19
O 2013 55 37 60 46 121 27 37 149 20 56 �7 115 33 141 19
NC 2007 37 32 54 33 96 26 29 135 18 44 �10 128 27 134 17
NC 2011 57 49 54 47 108 30 42 138 23 56 �5 110 27 157 15
NC 2012 58 28 68 53 82 39 49 112 30 56 4 94 33 140 19
NC 2013 60 17 78 52 97 35 43 137 24 58 �8 115 33 139 19
SC 2007 55 �22 167 43 116 27 38 135 22 51 �6 114 32 153 17
SC 2011 59 28 68 56 56 50 53 82 39 58 0 99 42 95 31
SC 2012 e e e e e e e e e 60 �9 117 37 155 19
SC 2013 e e e e e e e e e 63 �31 196 37 157 19
Averages 53 28 65 47 102 32 39 136 22 54 �7 115 33 139 19
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Figure 8. Plot of Cbio vs Canth in offshore and nearshore waters in the California Current
Large Marine Ecosystem. The simple schematic in the upper right is a cross section of
the coast with offshore being to the left, and with the mean path of upwelling water
indicated as a red arrow. Error bars express standard deviations for various estimates
from each region and depth (Table 1) rather than uncertainty, which is approximately
±10 mmol kg/1 (1s) for Cbio and Canth.
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percentage of individuals with severe dissolution for both pre-
industrial and current Uar values (Table 2).

During both 2011 and 2013 cruises, pteropod shell dissolution
was observed to be significantly higher in the nearshore region of
the CCLME. Currently, on average 57% of individuals are affected by
dissolution in the nearshore regions, but only 36% in the offshore
region (Table 2). This greater incidence of dissolution-affected in-
dividuals is consistent with lower aragonite saturation state in the
nearshore region (average Uar ¼ 1.07) compared to the offshore
region (average Uar ¼ 1.47).

4. Discussion

4.1. Estimates of Canth and Cbio in the CCLME

Because the increased DIC concentrations along the coast are
the result of uptake of Canth and upwelling of CO2-rich respired CO2
(Cbio) waters from below we have estimated the contributions of
both Canth and Cbio throughout the water column. Our estimates of
the distribution of Canth from the coast out to the open-ocean for
2013 are presented as maps for surface, 25, 55, and 105 m (Fig. 7),
and a summary of the regional averages are given in Table 1. In
nearshore surface waters, Canth ranges from about 37 to
60 mmol kg�1, with increasing concentrations north and south of
the region near Cape Blanco. The lowest Canth concentrations
(ranging from 37 to 55 mmol kg�1) are centered near the strong
upwelling center between the region south of the Columbia River
to CapeMendocino. To the north and south of this region nearshore
Canth concentrations are somewhat higher, indicating mixing of the
upwelled water with water that has been in recent contact with the
atmosphere. The highest Canth concentrations (ranging from 44 to
63 mmol kg�1) are located in the offshore surface waters. At 25 m in
the nearshore region, the influence of the upwelled water is more
pronounced, with Canth concentrations ranging from 33 to
Table 2
Average pre-industrial and current aragonite saturation states (calculated for years 2011 a
pre-industrial times and currently for the nearshore and offshore regions of CCLME.

Year Location Uar, preind. Uar, current % Ind

2011 nearshore 1.39 1.05 39
2013 nearshore 1.46 1.08 36
2011 offshore 2.21 1.51 8
2013 offshore 2.09 1.43 12
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55 mmol kg�1 along most of the coastline. At deeper nearshore
depths, Canth ranges from 33 to 56 mmol kg�1 at 55m and from 29 to
53 mmol kg�1 at 105 m.

Average Canth and Cbio concentrations are shown in Fig. 8 and a
summary of the regional and depth averages for Canth and Cbio is
given in Table 1. For comparison, Table 1 shows enriched carbon
contributions found at the surface and at 200 m depth at the most
northwestern station (i.e., most offshore) within each study region.
In offshore surface waters, nearly all of the enriched DIC (Canth þ
Cbio) is from Canth, whereas at 200 m only about 19% of the enriched
DIC is from Canth and the remainder is from Cbio.

In the nearshore region of the CCLME, enriched DIC in surface
waters ranged from 41 to 148 mmol kg�1, with an average of about
65% of enriched DIC in the surface waters due to Canth and the
remainder due to Cbio. Enriched DIC at 50 m is larger than at the
surface (range: 129e172 mmol kg�1), but the percentage due to
Canth is lower (~32%). Finally, at 100 m, only about 22% of the
enriched DIC is due to Canth. There is some year-to-year variability
within the regions but the highest contributions of Canth and total
enriched-DIC generally occur in the later years. While the per-
centage of Canth in the nearshore upwelled water is lower than the
surrounding water, the total amount of enriched DIC is highest in
the nearshore upwelled water and, consequently, those nearshore
upwelled waters are the most corrosive to calcifying organisms. In
subsurface waters, the most corrosive conditions occur in the
onshore bottom waters within 20 km of the coast. The uptake of
Canth has caused the aragonite saturation horizon to shoal by
approximately 30e50 m since the preindustrial period so that
undersaturated waters are well within the regions of the conti-
nental shelf that affect the shell dissolution of living pteropods
(Feely et al., 2008).

4.2. Biological impacts evaluated as pteropod shell dissolution

Co-locating biological responses and chemical observations al-
lows for direct comparison of results in 2011 and 2013. Pteropod
dissolution has been found to be highly correlated with aragonite
saturation conditions in 2011 (Bednar�sek et al., 2014a). Conse-
quently, we have used the same procedure to also correlate the
extent of dissolution also for 2013. Pteropod shell dissolution
significantly increased from offshore to nearshore in the CCLME.
Pteropods were ~22% more likely to be affected by severe shell
dissolution in nearshore waters compared with offshore waters.
Consistent with these results, nearshore Uar values were approxi-
mately 40% lower than offshore values, indicating a strong negative
correlation between the percentage of pteropod individuals with
severe shell dissolution and Uar (Fig. 6).

In 2011 and 2013, Canth contributed approximately 22e65% of
the enriched DIC in the coastal areas over the period of the spring
and summer measurements through the top 100 m (Table 1). This
contribution lowered average seawater Uar values from approxi-
mately 1.39 to 1.05 in the nearshore region in 2011, and from 1.46 to
1.08 in 2013. Offshore, the contribution of Canth reduced Uar from
an average of 2.21 to 1.51 in 2011, and from 2.09 to 1.43 in 2013
since the pre-industrial times. Consequently, based on the newly
nd 2013) and average percentage of individuals affected by severe dissolution in the

. with severe dissolution, preind. % Ind. with severe dissolution, current

58
56
34
37
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developed relationships in Fig. 6, we estimate that the percentage
of pteropods affected with severe dissolution due to the Canth
contribution in 2011 increased 19% in the nearshorewaters and 26%
in the offshore waters (Table 2). In 2013, we estimate Canth had
increased the percentage of individuals affected by dissolution by
20% and 25% in nearshore and offshore waters, respectively
(Table 2). The 2013 results are comparable to the results for 2011,
providing further evidence for increasing incidence of severe
dissolutionwith increasing Canth and decreasing Uar. The estimate
of pteropod dissolution from Canth is comparable to that reported
previously (Bednar�sek et al., 2014a), where dissolution was esti-
mated based on the difference between pre-industrial and current
DIC values.

The observed relationship between Uar and severe shell disso-
lution suggests that changes in the carbonate chemistry due to
Canth are already having an impact on L. helicina. Although the
percentage of individuals affected by dissolution in the nearshore
region is ~22% greater than in the offshore region, the increase due
to anthropogenic CO2 of approximately 19e26% is comparable in
both regions. Surprisingly, the relative change in the extent of
pteropod dissolution in the offshore regions suggest that they are at
least as vulnerable, or perhaps even more vulnerable, to the
changes imposed by the Canth uptake over the last several decades.
This may be related to the much lower natural variability in
offshore waters as compared with the nearshore waters.

Shell dissolution as observed in pteropods along the west coast
of North America affects their swimming abilities (Bednar�sek et al.,
unpublished results), and can potentially enhance predation pres-
sure and increase energetic costs of vital biological processes
(Lischka et al., 2011; Wood et al., 2008; Manno et al., 2012). This
chronic exposure to undersaturated conditions results in sub-lethal
effects of compromised physiological state that may, over longer
time periods, affect the overall pteropod population in the CCLME
(Weisberg et al., 2016). Given that pteropods are equally abundant
nearshore and offshore (Mackas and Galbraith, 2012; Bednar�sek
et al., 2012b), changes due to OA intensification might have
ecological implications in both regions. Additionally, the role of
pteropods as potentially important prey species requires better
understanding of trophic interactions with their predators on the
regional level in the CCLME. Integrating pteropods as an indepen-
dent functional group in end-to-end modeling efforts can help
reveal the impacts of potential pteropod biomass decreases on
higher trophic levels. Introducing pteropods in such models would
require incorporating information on pteropod diet, life-history
stages, and physiological and feeding responses, which has
recently been reviewed by Bednar�sek et al. (2016).

5. Conclusions

By combining chemical and biological studies in the field we are
able to provide a clearer picture of the extent of Canth distributions
and its likely impact on pteropod shell dissolution. Our results
suggest that large-scale declines in the aragonite saturation states
of the CCLME resulting from the uptake of Canth in open-ocean and
coastal waters are leading to increased incidence of pteropod shell
dissolution and potentially creating significant challenges for these
organisms. Since the pre-industrial times, pteropod shell dissolu-
tion has, on average, increased approximately 19e26% in both
nearshore and offshore waters in the CCLME. The capacity of these
organisms to acclimatize and adapt to OA, amid concurrent changes
in temperature, dissolved oxygen, and other drivers remains largely
unknown. Nevertheless, the results shown here clearly indicate
that humankind may already be having a significant impact on a
species that may play a vital role in this large and important marine
ecosystem.
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