Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When Atlantic herring eggs were fertilized, incubated, and hatched in ocean acidification conditions, there was no effect on embryo development or hatch rate. There was also no clear relationship between ocean acidification and length, weight, yolk sac area, or otolith area of the newly hatched larvae. However, the larvae did ...

Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures

  • Posted on: Wed, 03/30/2016 - 16:03
  • By: petert

The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to ...

Saturation-state sensitivity of marine bivalve larvae to ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:50
  • By: petert

Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid–base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent ...

The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2

  • Posted on: Wed, 03/30/2016 - 15:29
  • By: petert

Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 μatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, ...

Carbonate Mineral Saturation State as the Recruitment Cue for Settling Bivalves in Marine Muds

  • Posted on: Wed, 03/30/2016 - 15:25
  • By: petert

After a pelagic larval phase, infaunal bivalves undergo metamorphosis and transition to the underlying sediments to begin the benthic stage of their life history, where they explore and then either accept or reject sediments. Although the settlement cues used by juvenile infaunal bivalves are poorly understood, here we provide evidence ...

Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:23
  • By: petert

The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in ...

Severe tissue damage in Atlantic cod larvae under increasing ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:21
  • By: petert

Ocean acidification, caused by increasing atmospheric concentrations of CO2, is one of the most critical anthropogenicthreats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid–base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such ...

Vulnerability and adaptation of US shellfisheries to ocean acidification

  • Posted on: Wed, 03/30/2016 - 15:16
  • By: petert

Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we ...

Long-term and trans-life-cycle impacts of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis

  • Posted on: Wed, 03/30/2016 - 15:13
  • By: petert

Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on ...

Elevated pCO2 exposure during fertilization of the bay scallop Argopecten irradians reduces larval survival but not subsequent shell size

  • Posted on: Wed, 03/30/2016 - 14:03
  • By: petert

Ocean acidification, characterized by elevated partial pressure of CO2 (pCO2), generally has negative effects on early life stages of invertebrates. We tested the idea that fertilization is a critical CO2 exposure stage for the bay scallopArgopecten irradians by determining the effects on bay scallops of exposure to high CO2 (pCO2 ~2600 ppm, pH ~7.30) from ...

Pages